Solidarité & progrès est un parti politique qui milite pour la paix par le développement économique mondial, contre le féodalisme financier et les idéologies du sol, du sang et de la race. Les informations que nous diffusons visent à vous faire joindre notre combat en le faisant devenir aussi le vôtre.

La campagne
présidentielle
Cheminade 2017
Flash : 2 décembre - La République se rappelle qu’elle a besoin de savants ! Lire Flash : 2 décembre - Sur le renoncement de François Hollande Lire Flash : 2 décembre - François Fillon veut six fois moins de communes et zéro départements Lire
Accueil Nouvelles du monde
639 visites

Les niveaux de maturité technologique

L’échelle des niveaux de maturité technologique est un système de mesure employé notamment par des agences et entreprises pour évaluer le stade de développement d’une invention avant de l’intégrer dans un système ou sous-système.

Une fois qu’une nouvelle technologie est conçue, en tant que principe, elle doit d’abord être soumise à une série d’expérimentations et de tests de plus en plus sophistiqués avant d’être convertie en application.

Le tableau ci-dessous présente les définitions utilisées entre autres par la NASA et l’ESA. Elles ont été développées dans un premier temps par le département américain de la Défense.

Niveaux de maturité technologique
Niveau de maturité technologiqueDescription
1. Principes de base observés et rapportés Plus bas niveau de maturité technologique. La recherche scientifique commence à se traduire en recherche appliquée et développement. Les exemples peuvent inclure des études papiers des propriétés de base d’une technologie.
2. Concepts et/ou applications de la technologie formulés L’invention débute. Une fois les principes de base observés, les applications pratiques peuvent être inventées. L’application est spéculative et il n’y a aucune preuve ou analyse détaillée pour étayer cette hypothèse. Les exemples sont toujours limités à des études papier.
3. Fonction critique analysée et expérimentée et/ou preuve caractéristique du concept Une recherche et développement active est initiée. Ceci inclut des études analytiques et des études en laboratoire afin de valider physiquement les prévisions analytiques des éléments séparés de la technologie. Les exemples incluent des composants qui ne sont pas encore intégrés ou représentatifs.
4. Validation en laboratoire du composant et/ou de l’artefact produit Les composants technologiques de base sont intégrés afin d’établir que toutes les parties fonctionnent ensemble. C’est une "basse fidélité" comparée au système final. Les exemples incluent l’intégration ’ad hoc’ du matériel en laboratoire.
5. Validation dans un environnement significatif du composant et/ou de l’artefact produit La fidélité de la technologie s’accroit significativement. Les composants technologiques basiques sont intégrés avec des éléments raisonnablement réalistes afin que la technologie soit testée dans un environnement simulé. Les exemples incluent l’intégration ’haute fidélité’ en laboratoire des composants.
6. Démonstration du modèle système / sous-système ou du prototype dans un environnement significatif Le modèle ou le système prototype représentatif (bien au-delà de l’artefact testé en TRL 5) est testé dans un environnement significatif. Il représente une avancée majeure dans la maturité démontrée d’une technologie. Les exemples incluent le test d’un protoype dans un laboratoire "haute fidélité" ou dans un environnement opérationnel simulé.
7. Démonstration du système prototype en environnement opérationnel Prototype dans un système planifié (ou sur le point de l’être). Représente une avancée majeure par rapport à TRL 6, nécessitant la démonstration d’un système prototype dans un environnement opérationnel, tel qu’un avion, véhicule... Les exemples incluent le test du prototype sur un avion d’essai.
8. Système réel complet et vol de qualification à travers des tests et des démonstrations La preuve a été apportée que la technologie fonctionne sous sa forme finale et avec les conditions attendues. Dans la plupart des cas, cette TRL représente la fin du développement de vrais systèmes. Les exemples incluent des tests de développement et l’évaluation du système afin de déterminer s’il respecte les spécifications du design.
9. Système réel prouvé à travers des opérations / missions réussies Application réelle de la technologie sous sa forme finale et en conditions de mission, semblables à celles rencontrées lors de tests opérationnels et d’évaluation. Dans tous les cas, c’est la fin des derniers aspects de corrections de problèmes (bug fixing) du développement de vrais systèmes. Les exemples incluent l’utilisation du système sous conditions de mission opérationnelle.

(Source : Wikipedia)